made from steel with grease lubrication

For advanced drive technology

Operating description

GEAREX couplings made from steel with grease lubrication and toroidal sealing ring correspond to the international standard. Being flexible shaft connections they are suitable for a positive torque transmission. In addition, they ensure to compensate for axial, radial and angular shaft displacements.

GEAREX couplings are used in every range of general engineering requesting for high operating safety and a long service life resulting from the reliable grease lubrication of the crowned spline. The couplings are suitable for horizontal assembly. As special solutions they are suitable for vertical assembly, too.

Numerous coupling sizes for a torque transmission from 930 Nm to 135.000 Nm with shaft dimensions up to a maximum of Ø 276 mm are available. The coupling torques may be increased by using special materials.

GEAREX couplings are in correspondence with the AGMA standard (American Gear Manufacturer Association). Small dimensions and a low weight along with a small mass moment of inertia result in a wide range of applications of GEAREX couplings.

According to the operating principle of the well-known crowned gear edge pressure in the spline is avoided in case of angular and radial displacements. Moreover, permanent grease lubrication produces a better friction ratio of the spline with an operation almost free from wear along with a long service life of the coupling.

In order to ensure a regular and verified lubrication in assembled condition, two connections for hydraulics are arranged opposite to each other radially on each coupling sleeve. As a result a complete GEAREX coupling has four connections being offset to each other by 90°. The interior of the coupling is sealed by means of toroidal sealing rings (NBR 70 ShA). The feather keys have to be sealed against escape of lubricants during the assembly.

GEAREX Gear couplings made from steel with grease lubrication Coupling selection for shaft couplings

The coupling has to be dimensioned in a way that the permissible coupling load is not exceeded during any operating condition. For that purpose the loads that are produced have to be compared to the permissible characteristic figures of the coupling.

1 Coupling selection

The coupling is selected according to the rated torque (T_{KN}). For that purpose the corresponding operating factors of the driving machine have to be taken into account, see starting factor S_{Z} and operating factor S_{B} .

2 Load of the coupling

$T_{KN} \ge T_{NS}$
$T_{NS} = T_N \cdot S_Z \cdot S_B$
$T_{N} [Nm] = 9550 \cdot \frac{P_{AN/LN} [kW]}{n [1/min]}$

 T_{KN} = rated torque of the coupling

- $T_N = driving torque$
- TNS = driving torque including operating factors
- S_Z = starting factor
- S_B^2 = operating factor

3 Starting torque

The permissible starting torque of the machine should not exceed two times the rated torque of the coupling.

4 Permissible load on the feather key of the coupling

The shaft-hub-connection should be verified by the customer. Permissible surface pressure according to DIN 6892 (method C).

5 Permissible temperature range

The coupling can be used in a temperature range from -20 $^\circ\text{C}$ to +80 $^\circ\text{C}.$

6 Example of selection

Electric motor:	30 kW
Application:	textile machine
Shaft-Ø:	70/65 mm
Speed:	250 1/min
Starts:	< 10/h
Starting torque:	2865 Nm

Result:

 $T_N = 9550 \cdot \frac{30 \text{ kW}}{250 \text{ 1/min}}$

 $T_{NS} = 1146 \text{ Nm} \cdot 1 \cdot 1,25$ $T_{NS} = 1432,5 \text{ Nm}$

Coupling selected:

GEAREX 15 (T_{KN} = 2000 Nm) The starting torque of the machine is 2,5 times the starting torque (2865 Nm). (permissible $2 \cdot T_{KN}$ = 4000 Nm)

Service factor S_Z for starting frequency

starting frequency/h	10	25	50
SZ	1,0	1,2	1,4

Operating factor S_B

Kind of load Operating features		Machines	Operating factor
Smooth/ smoothly	Permanent operation without overload or shock load. Low con- necting frequency.	 Electric generators Radial pumps Light-weight fans 	1,00
Light-weight	Permanent operation with small overload and short-term and rare shock load.	 Multistage radial compressors Piston pumps Large fans (heavy load operation) Mixers for liquids Mixers for solid matters Textile machines Machine tools Belt conveyor Elevators 	1,25
Average	Interrupted operation with low shock load and short-term average overload.	 Piston compressor, cranes (running or drawing operation) Winding engine, calenders for rubber and nylon Calenders Rolling mill drives Non-reversing cold rolling mill 	1,50
Heavy	Operation with heavy and frequent shock load. Frequent load reversion. High degree of safety.	 Bridge cranes for steel industry Mixers for rubber and nylon Cranes (heavy load operation) Wood grinders, marine drives Equipment for transport of persons Mine fans Roller tables Non-reversing cold rolling mills Reversing cold rolling mills Hot-rolling mill 	2,00
Very heavy	Extreme and over- load with frequent and sudden load revolution.	 Reversing rolling mill drives Heavy load operation in steel industry Slitting machines Grinding machines Scissors and cutters Crushers 	2,50

made from steel with grease lubrication

Type FA, FB and FAB

	Max, finish						D	imensio	ns						Eat 2)
Size	bore	[mm]								feeding					
0.20	d d			_	E	1		[]					E 1)	d 1)	[dm ³]
	u ₁ , u ₂	1, 12	⊢FA	⊢FB	⊢FAB	⊢FA	⊢FB	FAB	∟3		D _{A1}	D _{A2}	Г ′	u _{3 ′}	[ann]
10	50	43	3	21	12	89	107	98	55	67	111	83	74	52	0,02
15	64	50	3	15	9	103	115	109	59	87	152	107	84	68	0,04
20	80	62	3	31	17	127	155	141	79	108	178	129,5	104	85	0,08
25	98	76	5	29	17	157	181	169	93	130	213	156	123	110	0,12
30	112	90	5	33	19	185	213	199	109	153	240	181	148	130	0,18
35	133	105	6	40	21,5	216	250	233	128	180	280	211	172	150	0,22
40	158	120	6	42	24	246	282	264	144	214	318	249,5	192	175	0,35
45	172	135	8	50	29	278	320	299	164	233	347	274	216	190	0,45
50	192	150	8	56	32	308	356	332	182	260	390	307	241	220	0,70
55	210	175	8	70	39	358	420	389	214	283	425,5	332,5	275	250	0,90
60	232	190	8	84	46	388	464	426	236	312	457	364	316	265	1,15
70	276	220	10	76	43	450	516	483	263	371	527	423,5	360	300	1,50
1) Required	d space to align the	coupling o	or replace th	he sealing i	ring, respec	ctively.			2	2) Fat feed	ing for eac	n coupling	half		

Max. Massmoment of Dowel screws (10.9) Torque [Nm] Weight with max. bore-Ø [kg] Size speed inertia J with max. Τ_{KN} Sleeve Hub Total z Μ T_{Kmax.} [1/min] bore-Ø [kgm²] T_A [Nm] 930 1860 8500 0,748 0,553 0,00436 6 M6 10 2,73 15 2000 4000 1,878 15 7700 1,119 6,38 0,01894 8 M8 36 20 3500 7000 6900 2.602 2.089 9.94 0.04000 6 M10 72 0,09749 125 25 6500 13000 6200 4,432 3,564 16,83 6 M12 30 10000 5800 5.829 0,18080 8 125 20000 6,184 25,21 M12 35 17000 34000 5100 9,705 9,868 41,25 0,41419 8 M14 200 40 28500 57000 4500 11,883 16,065 58,14 0,75535 8 M14 200 45 37000 74000 4000 15,724 21,419 77,08 1,17590 10 M14 200 102000 3750 25,661 114,40 2,24991 430 50 51000 29,594 8 M18 55 65000 130000 3550 31,522 40,304 150,41 3,45102 14 M18 430 60 85000 170000 3400 32,822 4,16734 430 52,960 177,44 14 M18 70 135000 270000 3200 43,521 85,768 268,20 9,32429 16 M20 610

Order form:

GEAREX FA-10	d ₁ Ø 50	d ₂ Ø 50		
Size and type of coupling	Finish bore keyway DIN 6885 sheet 1	Finish bore keyway DIN 6885 sheet 1		

made from steel with grease lubrication

Displacements

Axial displacement

Angular displacement

Sizo	Max. axial displacement	Max. permissible displacements ¹⁾				
Size	[mm]	Δ Kr [mm]	ΔKw [°]			
10		0,4				
15		0,5				
20		0,6				
25	± 1,0	0,8				
30		1,0				
35		1,0	0.5° each bub			
40		1,2	0,0 00011105			
45		1,4				
50		1,6				
55	± 1,5	1,8				
60		2,0				
70		2,2				

 The displacement figures are maximum figures which must not arise at the same tine. If both radial and angular displacement arise at the same time, these figures have to be reduced (see examples of calculation and diagramme).

Example 1:

ΔKr	=	30%
ΔKw	=	70%

Example 2:

 $\begin{array}{rcl} \Delta {\rm Kr} &=& 60\% \\ \Delta {\rm Kw} &=& 40\% \end{array}$

made from steel with grease lubrication **Flange dimensions – other designs**

				Dimensio	ons [mm]			
Size	D _{A1}	D _{A2}	D ₂	D ₃	d _l	Number z	l ₃	I ₅
10	111	83	82	95,25	6,35	6	14	3
15	152	107	105	122,24	9,52	8	19	3
20	178	130	130	149,23	12,70	6	19	3
25	213	158	153	180,97	15,87	6	22	4
30	240	182	178	206,38	15,87	8	22	4
35	280	214	205	241,30	19,05	8	28,5	5
40	318	250	243	279,40	19,05	8	28,5	4
45	347	274	265	304,80	19,05	10	28,5	5,5
50	390	309	302	342,90	22,22	8	38	6
55	424,5	334	320	368,30	22,22	14	38	6
60	457	365,5	353	400,05	22,22	14	26	6
70	527	425	412	463,55	25,40	16	28,5	8

Other designs:

Design with brake disk

Design with spacer